THE RELATIONSHIPS AMONG NUMBER LINE ESTIMATIONS, MATHEMATICS ACHIEVEMENT AND PLACE VALUE CONCEPT

MEHMET HAYRI SARI,¹ SINAN OLKUN²

¹Faculty of Education, Nevşehir HBV University, Turkey ²Faculty of Education, TED University, Turkey

GlobETS: AN INTERNATIONAL CONFERENCE ON EDUCATION, TECHNOLOGY AND SCIENCE 6-9 MAY 2018, Belgrade

EARLY MEANINGS OF NUMBERS

Early meanings of (naturel) numbers are established on quantities,

either;

Or;

 continious (measurable) quantity (magnitude), like distance, number line etc...)

Discrete (countable) quantity (like sets of objects, sets of dots etc...)

 \rightarrow 7

REPRESENTATIONS OF NUMBERS

DEALING WITH NUMBERS

ANS: Approximate Number System ENS: Exact Number System ATS: Access to Symbols

- The core systems of number has 3 components
- We estimate large numbers but we calculate small numbers
- Each of the ANS acuity, ENS accuity, and ATS (an understanding of number symbols) independently contribute to mathematics achievement
- How do we represent and manipulate (calculate) large numbers?

BACKGROUND

- The understanding of the concept of a positional, or place value system is central to developing number sense and is also the basis for the four fundamental operations on numbers.
- Place-value knowledge is particularly important in understanding regrouping, gaining number sense, and making mental computations.
- Children with good place-value understanding were better than their peers at making accurate numberline placements.

16 + 14 = 30

20 + 80 = 100

PURPOSE

To investigate the relationships among students' number line estimations, place value understanding and mathematics achievement scores.

METHODS

- Participants:
 - A total of 355 fourth graders from primary schools in a Mid-Anatolian City

Table 1. Demographics of the participants

Gender	N	Mean age
Girls	171	9,3
Boys	184	9,7
Total	355	9,6

METHODS

- Three tests were administered to the students.
 - First, students were administered a curriculum based Mathematics Achievement Test (MAT)
 - It includes numbers, counting, number patterns, four arithmetic operations and fractions.
 - test took one class hour
 - Second, students were administered Mental Number Line Test (MNL)
 - The test was administered on Personel Computer (PC)
 - No timing was recorded for this test.
 - There were 2 sample items before each of the actual test.

METHODS

- The third test was the Place Value Test (PVT)
 - Place Value Test were developed by Sari (in press) by considering the relevant acquisitions regarding the concept of place value in 4th grade primary school mathematics curriculum.
 - The administration of the test took one class hour.

ANALYSIS

We have determined the row score of students in MAT and PVT.

Total Absolute Errors (TAE) were calculated for MNL 0-10,
 MNL 0-100 and MNL 0-1000 estimations (Siegler & Booth, 2004)

TAE = (Estimations – to be estimated number) / scale

ANALYSIS

- We looked at the correlations among the tests.
- To estimate the explanatory power of mathematics achievement, and arithmetic tests on Number Line Estimations, we run regression analysis.
- We also compared males and female students' scores in MAT, MNL and PVT through Independent-Samples T-tests

Table 1: Correlations among the tests used in the study

Tests	PVT	MAT	MNL1	MNL2	MNL3
PVT	-	.836**	519**	517**	599**
MAT		-	496**	544**	597**
MNL1			-	.576**	.565**
MNL2				-	.824**
MNL3					-

PVT: Place Value Test, **MAT:** Mathematics Achievement Test, **MNL1:** Mental Number Line 0-10, **MNL2:** Mental Number Line 0-100, **MNL3:** Mental Number Line 0-1000.

- As you see from Table 1, we found statistically significant correlations among all the tests used for the study.
- The highest correlation was calculated between **PVT** and **MAT** scores.
- Also **PVT** have stronger correlations with **MNL3**.
- MAT have correlations with Mental Number Estimations, stronger with MNL3

Table 2: Summary of regression results for MNL1, MNL2, and MNL3 with PVT

Model	Variables	R	R ²	F	β	t	р
	MNL1						
1	MNL2	.637 🤇	.406	80.06	465	-6.21	.000
	MNL3						

a Predictors: (Constant), MNL1 (Mental Number Line 0-10), MNL2 (Mental Number Line 0-100), MNL3 (Mental Number Line 0-1000)

The results also showed that;

- When MNL1, MNL2, and MNL3 were entered in the regression we saw that all of the tests have significant explanatory power on place value test (PVT).
- MNL1, MNL2, and MNL3 together have explained 41% of the variance in PVT.
- MNL3 alone has accounted for 36% of the variance in the PVT.

Table 3: Summary of regression results for MNL1, MNL2, and MNL3 with MAT

Model	Variables	R	R ²	F	β	t	р
	MNL1						
1	MNL2	.629	.396	76.62	465	-6.21	.000
	MNL3						

a Predictors: (Constant), MNL1 (Mental Number Line 0-10), MNL2 (Mental Number Line 0-100), MNL3 (Mental Number Line 0-1000)

The results showed;

- MNL1, MNL2, and MNL3 together have explained 40% of the variance in MAT.
- MNL3 alone accounted for 36% of the variance in the MAT.
- On the other hand, MNL 0-1000 (large numbers) contributed more to mathematics achievement.

Table 4: T-test results of lower and upper groups' PVT and MAT Scores

Variables	Groups	Ν	Mean	Sd	df	t	р
Ρ٧Τ	Lower-group	42 (3.30	2.56	79	-14.822	000*
	Upper group	39 🤇	11.20	2.20	15		.000
MAT	Lower-group	42 🤇	3.66	2.66	79	-14.999 (.000*
	Upper group	39 🤇	12.87	2.85	- •		

Also;

- In order to see if PVT scores have any effect on MAT, a linear regression analysis was run.
- Results showed that PVT (R= .836, R2= .698) explained 70% of the variance (F₍₁₋₃₅₃₎= 817.53, p<.01) in MAT.</p>
- On the other hand, PVT contributed more than MNL to mathematics achievement.

Table 5: Gender differences

	N	PVT Mean	MAT Mean	MNL1 TAE	MNL2 TAE	MNL3 TAE
Boys	184	7.95	8.73	29.44	199.6	2533.8
Girls	171	7.85	9.27	31.16	218.3	2944.7
	р	(.789)	(.263)	(.368)	(.237)	(.014)*

- Gender analysis showed that there were no statistically significant differences between boys and girls in PVT, MAT, MNL1 and MNL2.
- There are gender differences only in the MNL3 favoring boys.

CONCLUSIONS

The analysis showed six main results:

- First, Place Value (PVT) understanding has strong correlations with both Mathematics Achievement scores and Number Line estimations (0-1000).
- Second, boys generally did better, (made) more accurate number line estimations (0-1000) than girls.
- Third, number line estimation skill is a strong predictor of place value understanding, with MNL (0-1000) being the strongest,

CONCLUSIONS

- Fourth, number line estimation skill is a strong predictor of mathematics achievement, with MNL (0-1000) being the strongest.
- Fifth, there are huge differences between the worse number line estimators (bottom 27%) and better number line estimators (top 27%) in terms of both math achievement and place value understandings
- Sixth, place value understanding explains a significant portion of math achievement.

REFERENCES

- Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. *Dev Psychol*, 42(1), 189-201. doi:10.1037/0012-1649.41.6.189
- Laski, E. V., & Siegler, R. S. (2007). Is 27 a Big Number? Correlational and Causal Connections Among Numerical Categorization, Number Line Estimation, and Numerical Magnitude Comparison. Child Development, 78(6), 1723 - 1743.
- Lefevre, J. A., Jimenez Lira, C., Sowinski, C., Cankaya, O., Kamawar, D., & Skwarchuk, S. L. (2013). Charting the role of the number line in mathematical development. *Front Psychol, 4*, 641. doi:10.3389/fpsyg.2013.00641
- Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. *Child Dev*, 75(2), 428-444. doi:10.1111/j.1467-8624.2004.00684.x
- Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 89-96. doi:10.1111/j.1467-7687.2007.00569.x